MS in Data Science
所属信息
基本信息
项目时长
2项目学分
32学费估算
$24,489申请截止日期
-
秋季
-
早申请
5月1日
-
其他
-
春季
10月15日 -
国际生
5.1
申请信息
托福/GRE Code
3665申请费
75-100GPA要求
3.00
TOEFL要求
100.00
Prerequisite
Placement Exams Each incoming masters student, regardless of his or her background, takes two placement exams administered one week prior to the beginning of the semester. The two exams cover fundamentals of computer science and programming skills and basic statistics, probability, and linear algebra. If the student does not get a B or above in a part of the placement exam, then the student must take the corresponding introductory course.
Introduction to Programming for Data Science (DS 5010) The introductory course on fundamentals of programming and data structures covers data structures (lists, arrays, trees, hash tables, etc.), program design, programming practices, testing, debugging, maintainability, data collection techniques, and data cleaning and preprocessing. This course will have a class project where the students will use the concepts they learn to collect data from the web, clean, and preprocess and ready for analysis.
Introduction to Linear Algebra and Probability for Data Science (DS 5020) The introductory course on basics of statistics, probability, and linear algebra covers random variables, frequency distributions, measures of central tendency, measures of dispersion, moments of a distribution, discrete and continuous probability distributions, chain rule, Bayes' rule, correlation theory, basic sampling, matrix operations, trace of a matrix, norms, linear independence and ranks, inverse of a matrix, orthogonal matrices, range and null space of a matrix, the determinant of a matrix, positive semidefinite matrices, eigenvalues and eigenvectors.
Introduction to Programming for Data Science (DS 5010) The introductory course on fundamentals of programming and data structures covers data structures (lists, arrays, trees, hash tables, etc.), program design, programming practices, testing, debugging, maintainability, data collection techniques, and data cleaning and preprocessing. This course will have a class project where the students will use the concepts they learn to collect data from the web, clean, and preprocess and ready for analysis.
Introduction to Linear Algebra and Probability for Data Science (DS 5020) The introductory course on basics of statistics, probability, and linear algebra covers random variables, frequency distributions, measures of central tendency, measures of dispersion, moments of a distribution, discrete and continuous probability distributions, chain rule, Bayes' rule, correlation theory, basic sampling, matrix operations, trace of a matrix, norms, linear independence and ranks, inverse of a matrix, orthogonal matrices, range and null space of a matrix, the determinant of a matrix, positive semidefinite matrices, eigenvalues and eigenvectors.
申请材料
Resume +PS+ Transcript+3 Recommendations +GRE+TOEFL/IELTS